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The force acting on a fish-like body with combined thickness and lifting effects 
is analysed on the assumption of inviscid flow. A general expression is developed 
for the pressure force on the body, which is analogous to the momentum-flux 
analysis for non-lifting bodies in classical hydrodynamics. For bodies with con- 
stant volume, the mean drag (or propulsive) force is expressed in terms of a 
contour integral around the vortex sheet behind the body. Attention is focused 
on the case of steady-state motion with constant angle of attack, and the induced 
drag is analysed for finned axisymmetric bodies using the slender-body approxi- 
mation developed by Newman & Wu (1973). Unlike earlier results of Lighthill 
(1970), the lift-drag ratio in this case depends on the body thickness. 

1. Introduction 
Recent applications of slender-body theory to fish-like forms, having both 

thickness and appendedlifting surfaces, have been stimulated not only by interest 
in fish propulsion but also by the applicability of such a theory to study of sailing 
yachts and submarines. In  all three of these cases the essential feature is the 
presence of both upstream lifting surfaces (side fins, keel or sailplane, respectively) 
and downstream appendages (caudal fin or rudder), and as a result of the shedding 
of vorticity a t  the upstream trailing edges, there is an interaction between the 
vortex sheet, the downstream portion of the body and the tail fins. Analyses 
of this type of flow, within the framework of slender-body theory, have been 
presented by Lighthill (1970), Wu & Newman (1972) and Newman & Wu 
(1973). Unlike the earlier references, Newman & Wu (1973) accounted not only 
for the kinematic interaction of the body, fins and vortex sheets, but also for the 
dynamic effect of the body thicknesses on the trailing vortices; thus by Kelvin’s 
theorem these vortex filaments must follow the ‘ stretched-straight ’ streamlines 
past the body, allowing for the effects of body thickness. The departure of these 
vortices from the purely longitudinal arrangement common in linearized thin- 
wing theory is an essential consequence of the consistent slender-body approach. 

Taking these vortex-body interactions into consideration, Newman & Wu 
(1973) obtained explicit results for the linear lifting flow past axisymmetric 
bodies with planar fin appendages having abrupt trailing edges, and presented 
computations for the steady lift force with both symmetrical and asymmetrical 
fin configurations. Their results can be applied more generally to find the yawing 
moment and distribution of lift force along the body for more general body 
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motions. However, the drag component of the force was not examined, and this is 
the purpose of the present paper. In order to  evaluate the drag force, we shall first 
develop, in $2,  a general expression for the pressure force acting on a portion of 
the body surface upstream of some arbitrary transverse plane x = constant, and 
based upon momentum conservation in a similar manner to the classical analysis 
for irrotational flow. (Here the flow is rotational only in the thin sheets of trailing 
vorticity .) The resulting expression for the hydrodynamic pressure force appears 
to be of interest in its own right, since it is free of any assumptions regarding body 
shape or linearization of the unsteady body motions. For motions with a mean 
constant forward velocity parallel to the x axis, the force can be expressed in 
particular as the sums of two terms: the first term is analogous to the added- 
mass force in irrotational flow, but with the surface integral (of the product of 
the velocity potential and the unit normal vector) taken not only over the body 
surface, but also over the vortex-sheet surfaces upstream of the (Trefftz) plane 
x = constant; and the second term is a surface integral in this Trefftz plane 
exterior to the body surface. Taking the Trefftz plane on the body gives the 
forces acting upstream of the plane and hence permits a determination of the 
differential lift force distribution, whereas taking the Trefftz plane behind the 
body tail gives the total force acting on the body. 

Finally, if slender-body approximations are introduced, the integral over the 
Trefftz plane can be reduced to a contour integral around the intersection of this 
plane with the body and/or wake. The resulting expression for the differential 
lift force is identical to the results of Newman & Wu (1973)) and suggests that, in 
fact, the only effect of nonlinear unsteady motions on the differential lift force is 
the departure of the trailing vortex sheets from the stretched-straight plane of 
symmetry of the body. These nonlinear developments are closely related to the 
Lagrangian analysis of large amplitude fish motions by Lighthill (1971). 

Returning to the linear domain of lateral body motion, we use the results of 
8 2 in conjunction with the velocity potential derived by Newman & Wu (1973), 
in 5 3, to determine the mean drag force, assuming steady motion of an axisym- 
metric body with planar foils and a constant angle of attack. The final results 
agree with classical slender-body theory and low-aspect-ratio wing theory for 
the special cases of a body without upstream fins and a planar foil without thick- 
ness, respectively. More generally, we find a lift-drag ratio which depends on the 
body geometry in a more complicated way than the corresponding results of 
Lighthill (1970); this difference is discussed in '$4, and is attributed to  the effects 
of body thickness on vortex-sheet dynamics and, in particular, on the departure 
of our downwash from the constant value associated with planar low-aspect-ratio 
lifting surfaces. 

2. The hydrodynamic pressure force 
We wish to consider the pressure force acting on a fish-like body, having both 

thickness and appended lifting surfaces, which moves with a constant forward 
velocity U and performs fairly arbitrary unsteady lateral motions. Cartesian 
co-ordinates (x, y, z )  are employed, and are fixed with respect to the mean position 
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of the body, with the body pointed in the negative-x direction. Hence the flow 
at large distances ahead of the body, relative t o  the (x, y, z )  co-ordinates, is a 
streaming flow with velocity U directed in the positive-x direction. Ideal inviscid 
flow is assumed and described by a velocity potential $(x, y, z ,  t)  such that the 
fluid velocity vector is equal to ’74, and V2$ = 0 except for a discontinuity across 
the vortex sheets shed a t  sharp trailing edges of body fins. Following Newman 
& Wu (1973), we shall assume that the body thickness is symmetrical about the 
x, y plane, the fins are situated in this plane and that the lateral (swimming) 
motion is defined by a prescribed body displacement normal to this plane of the 
form z = h(x,t). Ultimately, we shall assume that this displacement is a small 
perturbation of the steady ‘stretched-straight’ flow h = 0, and we shall also 
assume that the body-fin configuration as well as the displacement h(x,t) are 
slowly varying (i.e. slender) in the x direction, but in the present section a general 
analysis is made of the pressure force on the body which assumes only that the 
flow is inviscid and irrotational, except for thin vortex sheets on which the pres- 
sure is continuous. 

The pressure force F acting on the portion S,  of the body surface upstream 
of an arbitrary transverse plane x = constant is, from Bernoulli’s equation, 

where n is the unit normal vector pointing out of the fluid domain. In  order to 
express this pressure integral in a different form, we define the closed surface 
S,  + S ,  + S ,  + S,, as shown in figure 1, where S,  is the portion of the trailing 
vortex sheet upstream of S,, S ,  is the transverse (Trefftz) plane x = constant, 
exterior to the body, and S ,  is a fixed clasing surface a t  an infinitely large distance 
from S,  + S,. Noting that on S, the pressure is continuous, the integral in (1) 
can be extended to the surface S,  + S,, and hence from Gauss’s theorem 

[$ t+ i (V$)2 - iU2]ndS-p  V[$t+$(V$)z]dr,  (2) 

where the volume integral is over the fluid domain bounded by S, + S, + S, + S,. 
Next, we use the transport theorem for the time derivative of a volume integral: 

= p s S I ~ ~ + ~ m  sss 

where U, is the normal velocity of the boundary surface. Since S ,  + S, have 
zero normal velocity, relative to the (x, y, z )  co-ordinate system, and S,  + S,  
are material surfaces moving with normal velocity @/an, it follows from (2) 
and (3) that 

ST+Sm at 

44-2 
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sco 

FIGURE 1. Control surfaces for the analysis of the hydrodynamic pressure force. 

I f  Gauss’s theorem is applied, noting that on the fixed surface 8, the order of 
time differentiation and space integration may be interchanged, equation (4) 
takes the form 
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where Laplace's equation V2+ = 0 has been invoked. To evaluate the time 
derivatives of the integral over S,, we note that S ,  is the portion of the $xed 
plane x = constant bounded by thejixed curve Em, where ST and S ,  intersect, 
and the moving curve E,+E,, where 8, and S,+S, intersect. Thus, by 
analogy with the transport theorem (3) 

where u, is the normal velocity of &, in the plane x = constant. Substituting in 
(5) ,  it  follows that 

[i(Vq5)2 n - +Uzn - #nV$] dS 
= PSfSfS,,. 

- P i / /  $ n d S - p i f  +undl, (7) 
SB+HW XB+CW 

where i is the unit vector parallel to the x axis. 
Equation (7) is quite general, and may be used to find the vector force F, 

due to the action of hydrodynamic pressures on the portion of the body upstream 
of the plane S,, for arbitrary unsteady motion of the body. We shall use this 
equation first to find the differential lift forceL?(x, t )  acting on a body cross-section 
in the direction parallel to the lateral (2) axis, and then to find the mean total 
drag or propulsive force acting on the entire body, in the longitudinal (x) 
direction. In both cases the body volume is assumed to be constant, so that for 
large radial distances r away from the body surface and wake the potential 
takes the form 

# = Ux+ O(l/r2) as r + 00. (8) 

Focusing our attention &st on the lateral force F,, acting on that portion of 
the body situated upstream of the plane x = constant, and using (8) in (7) ,  we 
see that there is no contribution from S, and it follows that 

This equation is exact, for arbitrary body shapes and motions, but if the addi- 
tional assumption is made that the body is slender, then to leading order q5z = U, 
and hence from Stokes' theorem the lateral force takes the form 

where 

.I -1,. 

This equation for the differential lift force is identical to that obtained by New- 
man & Wu (1973, equation 6.8),  the latter being derived on the basis of a two- 
dimensional analysis in the cross-flow plane using slender-body approximations 
from the outset. 
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In an analogous manner the total drag force is obtained, as the x component of 
(7) ,  in the form 

where S ,  is taken downstream of the body tail. If the slenderness assumption is 
invoked (or S ,  taken sufficiently far downstream), the velocity 9, will differ 
from U by a negligible amount on ST,  and hence 

where Stokes's theorem and the (two-dimensional) Laplace equation have been 
used. If we restrict our attention to the mean drag, for oscillatory or steady 
motion, the time derivative in (13) will not contribute to the average over long 
time periods, and thus 

n 

where a bar denotes the time average. Finally, if we now invoke the lineariza- 
tion assumption that the vortex sheets are planar, it follows that, on the upper 
or lower sides of Z W ,  $n = F $B and un = T h,, where x = h(x, t )  is the position of 
Ew. Thus, from (14), 

where ( - al, a,) is the segment occupied by the contour Zw and 

(16) 
is the jump in the potential a.cross the sheet. If the motion is steady, h, = 0 and 
(15) reduces to the well-known induced-drag integral 

[$I = $(!I, o+ > t )  -$@, 0- 9 0 

for steady motion of a three-dimensional planar lifting surface. On the other 
hand, for unsteady motion of a slender body with a finned tail, having an abrupt 
trailing edge at the tail x = I ,  and no upstream trailing edges, (15) may be applied 
at x = 1, after noting that 

and 

whence, for this special case, (15) yields the simple result 

$z = V ( X ,  t )  h,+ Uhx (18) 

(19) [$I = - 2 W Y  + a,) (Y - 4 1 9 ,  

This is in agreement with Lighthill's (1960) equation for the mean propulsive 
force of a slender fish without side fins, 

P = -&b(ZT) [g-  u2@], ( 2 1 )  
where m(ZT) is the added-mass coefficient of the tail fin. 
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3. The drag of a slender finned body 
In  order to apply the drag integral (15) to a specific problem, we use the poten- 

tial as derived by Newman & Wu (1973, 53) for a slender fish-like body with 
thickness symmetrical about the x, y plane and with appended fins confined to 
the same plane. For this configuration the (lifting) potentialt at  any section 
x = constant on the body can be expressed as the real part of the complex 
potential f = q5 + ip? which takes the general form 

(Here we have omitted a term depending only on x and t ,  which gives no con- 
tribution to (15) but ensures that f + 0 at infinity.) In  this formula 6 is the com- 
plex variable g = y s i z ;  7 is the mapped variable 7 = qr+iri  such that ~ ( c )  
is a conformal transformation of the physical 6 plane into the 7 plane with 7 +- < 
at infinity and the body contour mapped to the symmetric cut qi = 0, 
- p  < 7T < /3. The parameters a, and a2 define the outer limits of the vortex 
sheets in the 7 plane, so that the trailing vortices shed from the body map into the 
two segments ( - a, - p)  and (p, a2). Two special casesare the symmetric configura- 
tion where a, = a2, and the single side fin and vortex sheet, where only one of the 
above segments exists, and hence a, = p or a2 = ,8 for the case of no lower or 
upper vortex sheets, respectively. With these definitions (and the convention 
ai = p if no vortex sheets are present), equation (22) is quite general and holds 
for all regions of the flow, including both leading- and trailing-edge regions of the 
body as well as the wake downstream of the body. 

The remaining parameter in (22) is the vortex-wake potential q50(q,, x, t ) ,  
which must be constant along the (curved) trailing vortices, when viewed in a 
fixed reference frame, and hence equal to the value of the potential at  the up- 
stream end of the vortex filament at a suitable retarded time. This value, in turn, 
is governed by the Kutta condition a t  the trailing edges, and for the case of an 
abrupt trailing edge parallel to the y axis, it  follows from continuity that q5* 
must equal the value of q5 immediately upstream of the trailing edge. For a body 
with a single side fin or a pair of side fins having trailing edges at  the same longi- 
tudinal position, 

$* = - V(x*,  t * )  ( P t  - VQP. (22) 

Here x+ is the position of the trailing edges, /3* = p(x*--O), t, is the retarded 
time 

t ,  = t - ( x - x * ) / U  (24) 

and q* is the value of q on the trailing edge where the vortex filament is shed. 
Equation (23) is valid for all positions a t  or upstream of the tail trailing edge 
x = I,. 

t The total potential will be of the form $ = Ux + $o + + $g + . . . , where Ux + i0 is 
the solution of the thickness problem, i.e. the flow past the stretched-straight body with 
h = 0. The potentials $m = O(h"), so that is the first-order lifting potentid, given in 
complex form by (22), and $2, etc., denote nonlinear terms. 
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For axisymmetric bodies with various fin configurations, Newman & Wu 
(1973) used this solution in the special case of steady motion at a constant angle 
of attack V / U ,  to compute the total lift force. Here we shall carry out the cor- 
responding computations, but using (17) to compute the drag force. For this 
purpose it is convenient to carry out the integration in (17) at the trailing edge 
x = I,, where -/3 < r < p corresponds to the tail trailing edge and the remain- 
ing contributions are due to the vortex-sheet segments -a1 < 7 < -/? and 
/? < 7 < az outboard of the fin. Thus we divide (17 )  into two parts, and use the 
following relations: 4, = v, (25 1 

on 171 < p (tail-fin trailing edge), (26 )  

[d] = 2q5* on 171 > p (vortex sheets outboard of tail fin). (28) 

Equation (25) follows from the kinematic boundary condition on the tail fin 
(and continuity of q5z across the trailing edge); (26) from direct evaluation of (22); 
(27) from the Cauchy-Riemann equations and (22); and (28) from the fact that 
4 = I q5* on the two sides of the vortex sheet. On substitution of (25)-(28) in 
(17 ) ,  the drag force for steady motion is obtained in the form 

a1 

- a8 
D = - - i p s  [$I # d r  

Changing the order of integration in the last double integral and integrating with 
respect to 7, it  follows that 

ti 

(30) 
or, after integrating by parts, 

(31) 
Equation (31) gives the drag force on an arbitrary body configuration in terms 

of the vortex-sheet potential $*. We recall that, in the mapped 9 plane, the tail 
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FIGURE 2. Geometrical configuration of the axisymmetric body with symmetric fins. 

trailing edge occupies the segment ( - ,8, p)  and the outboard vortex sheets are 
situated in the segments (-a,, -/I) and (p, a2). For a body with re-entrant tail 
fins or no outboard vortex sheets, it follows that a, = a2 = p, and hence from (31) 
the drag force is equal to &rpV2p2 in accordance with (20).  The other special 
case where simple results are obtainable is that of a planar symmetric foil 
without thickness where a1 = a2 = a and q5* = - V(a2 - q2)t; the resulting double 
integral is readily evaluated, and it follows that D = $rpV2a2, where a is the 
maximum semi-span. 

As a more general example, let us consider the axisymmetric body with sym- 
metric fins and abrupt trailing edges, illustrated in figure 2, for which Newman 
& Wu (1973) computed the lift force. For this case we have (cf. Newman & Wu 
1973, equations (7.2)-( 7 .8) ) ,  

+* = - W$ --Tz,)* 

= - V(a2- 7 2 ) 4 (7 + a2rEbi2)* (r2 + r$*. (32) 

where a1 = a2 = a and r, is the body radius? at the position of the upstream 
trailing edges, the semi-span of these being b,. On differentiating (32) with respect 
to 7 and using the relation a2 = bi - rt ,  it follows that 

a+*/@ = V7r3(y2 + 2 r 3  (a2 - q 2 ) d  (v2 + a2r$ b;a)-f. (q2 + r $ ) b .  (33) 

Substituting these expressions in (3 1) and changing the variables of integration 
to u = v2 and v = v:, it  follows that 

For tan axisymmetric body this radius r, is the only parameter associated with body 
thickness whioh affects the total lift and drag forces, for steady motion with constant 
angle of attack. 
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A more convenient form computationally is obtained by the substitution 
2 2 b - 2  (' + a ro O 

(v + r i )+  
3 F(v)  = F(w) - F(u)  -t F(zc). 

Then, using the Hilbert transform 

(a2-v)&dv 
V - p ) b  (v - ZG) 

= -7T, 

it follows that 

(35) 

1 a= (ZG-p)b&+ 2ri) 
- - p V2Jp du 

1T (a2 - u)& (u + a2r$ b,2)* (u + ri)# 

The value of the single integral is 

and hence 

1 a2 (u - pz),S u(u + 2 r 3  
1T 

- - p v q p  du 
(a2 - u)$ (u + a2rt b t2 )*  (u + T:)% 

The corresponding formula for the lift force is given by (Newman & Wu, 1973, 
equation 7.9) 

Asymptotic approximations for (38) and (39) can be derived for the cases of 
small body radius (r,, < a,P) and of nearly re-entrant tail fins (a2 M P2).  In the 
former case it follows that 

We note that in both cases the lift-drag ratio depends on the geometric para- 
meters (a, p, ro). 
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FIGURE 3. Drag coefficient of the axisymmetric body with symmetric fins shown in figure 2, 
as computed from equation (38). The dashed envelope is the re-entry point where the tail 
span equals the width of the vortex sheet, and for larger values of bT the drag coefficient 
is independent of bo and ro as shown. 
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FIG- 4. The lift-drag ratio times angle of attack corresponding to figure 3 and 
based on the lift calculations of Newman & Wu (1973, figure 4). 
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More general values of the drag force require a numerical evaluation of the 
double integral (38) and are displayed in figure 3, with corresponding values of the 
lift-drag ratio shown in figure 4. The drag coefficient D/&rpV2b% is equal to unity 
for a planar foil, and hence also when the ratio ro/bo of body radius to maximum 
semi-span vanishes. For increasing values of the body radius, the drag coefficient 
falls monotonically, ultimately reaching a value of zero for the (non-lifting) 
case yo/b0 = 1. The form of these curves is strikingly similar to the corresponding 
lift coefficients plotted by Newman & Wu (1973, figure 4). In  particular, the 
drag force depends primarily on the ratio r&,, and is not so strongly influenced 
by the tail semi-span b,, although the drag does increase moderately with 
increasing values of the ratio b,/b,. When the tail span exceeds the span of the 
vortex sheet shed from the upstream fins, the tail leading edges are ‘ re-entrant ’ 
and as in the case of the lift, the drag no longer depends on the body radius or 
upstream span b, (cf. the statement following equation 31). The lift-drag ratio 
is shown in figure 4, where the ratio aL/D is plotted so as to be independent of the 
angle of attack a = 7/17. For a planar foil the ratio aL/D = 2, and we see that the 
effects of body thickness are to increase the lift-drag ratio relative t o  that of a 
planar foil with the same plan-form. For the body without tail fins (6,/bo = 0) ,  
aL/D increases without limit as r,/bo-+ 1, as a result of the fact that the drag 
vanishes more rapidly than the lift in this limit; for bodies with tail fins a 
maximum lift-drag ratio is obtained at an intermediate value of ro/bo, and at the 
re-entrant point the planar value of two is again obtained, in consequence of the 
fact that both lift and drag then depend only on the tail span. 

4. Discussion 
As noted in the introduction, the present computations of the induced drag, 

and the underlying solution of Newman & Wu (1973) for the boundary-value 
problem of a finned slender body with outboard vortex sheets, differ from the 
earlier studies of Lighthill (1970), and Wu & Newman (1972)) by the considera- 
tion of the effects of body thickness on the dynamics of the trailing vortex sheets. 
The quantitative importance of this effect is not evident a priori, nor are calcula- 
tions of the lift and drag based on the earlier theories available for comparison. 
However, some insight into this question can be gained by outlining the approach 
of Lighthill (1970) and focusing on the difference between our respective values 
for the ratio of total lift force to drag, in the special case of steady-state motion 
with constant angle of attack. Thus, we write the velocity potential upstream of 
the first trailing edge z = x* in the form q5 = Vrp and downstream of x = x* 
in the form q5 = V(v+@), where 7 = constant. The ‘leading-edge’ potential rp 
satisfies the boundary condition &plan = ns on the body contour ZB and pl = 0 
on the wake contour C,. The potential @ accounts for the presence of trailing 
vortices on XW and satisfies the boundary condition a+/& = 0 on ZB. In  this way 
the velocity potential is decomposed, a t  each section of the body, into a part due 
to the body motions in irrotational flow and a part due to the outboard vortex 
sheets in the presence of a stationary body. (In the notation of Newman & 
Wu (1973), Vp and 76 are given by the real parts of the analytic functions f, 
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and f,, respectively.) The potential @ is uniquely determined by the Kutta 
condition 

lim q~ = lim (rp+k). (40) 
z+z* - 0 x-+x* + 0 

The virtual mass m(x) is defined in the conventional manner, in terms of the 
potential rp, in the form 

(41) 
av 

v z d l  I CB-I-CW 

m = p f  vn,dE=p 
Z B  

and by analogy, the virtual mass G(x) is defined as 

From Green's theorem and the boundary conditions on C,, it follows that 

(43) 
rp-ddl a@ = 0, 

an § CB+CW 

and hence the total kinetic energy in the cross-flow plane is equal to 

On the other hand, the lateral momentum in the same plane of fluid is 

P p  $%dl 
CB+CW 

and if the downwash behind the trailing edge is  constant, this momentum is equal to 

where the kinematic boundary condition at x = x* has been used to replace nz 
on 2, by a$/an. 

It now follows, by conservation of energy and (44), that the induced drag is 
equal to 

whereas, from conservation of lateral momentum and (45), the total lift force is 
given by the expression 

Equations (46) and (47), which are special cases of Lighthill's (1970) propulsive 
force (equation (27)) and (integrated) differential lift force (equation (25 ) ) ,  respec- 
tively, indicate, in particular, that the lift-drag ratio is equal to 2U/V and is 
independent of the body geometry. On the other hand, the computations shown 
in figure 4 do not agree with this value and, indeed, depend on the body thickness 
and fin spans. The reason for this discrepancy appears to lie with the assump- 
tion, in (45), that the downwash is constant on Z,. Indeed, the downwash 
on &,may be computed from (27), and is equal to V at x = x*, but departs from 
this conslant value downstream owing to the dependence of q5* on x. 

(46) D = QVym+fi),=l,  

L = UV(m+fi),=,,. (47) 
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In conclusion, we may regard the values of aL/D in figure 4 as a measure 
of the importance of the vortex-body interactions emphasized by Newman & 
Wu (1973). For small values of r,/bo, the effects of body thickness are small and 
hence the departure of the vortex sheets from their initial state of constant down- 
wash is small, so that by equations (46) and (47) aL/D % 2. As the ratio ro/bo 
increases, the interaction between the body thickness and vortex sheets becomes 
more significant, but ultimately the tail fin dominates both lift and drag (for 
b,/b, = 0 ) ,  and the interaction between the body and outboard vortices upstream 
of the tail is then of no significance to the lift-drag ratio. The effects of this inter- 
action for more general unsteady, undulatory motions, as in fish propulsion, 
cannot be estimated quantitatively from these conclusions; however, the curve 
b,/b, = 0 in figure 4 may constitute an approximate upper bound for the effect 
on the general steady-state lift distribution 9 ( x ) ,  since the tail fin does not affect 
the upstream flow. For undulatory motions, in space and/or time, it seems likely 
that phase differences of the vorticity in the streamwise direction will tend to 
dominate the interaction effect so that figure 4 may also serve as an upper-bound 
estimate in the case of more general body motions. Assuming these arguments 
are valid, the error in neglecting the vortex-body interactions, as in the earlier 
work of Lighthill (1970) and Wu & Newman (1972), should be no more than I 0  yo 
for ro/b,, < 0.5, or a fish with side-fin span greater than twice the body depth. Fin- 
ally, we emphasize that the above conclusions are based on the assumption of an 
axisymmetric body; for bodies which are flattened either in the vertical or lateral 
direction, one should approach the planar foil situation with trailing vortices 
parallel to the undisturbed free stream, and hence the interaction effect should 
be still smaller than the above estimates. In  the absence of more detailed numeri- 
cal calculations, however, these comments are somewhat speculative. 
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